A learning automata based multiobjective hyper-heuristic


Metaheuristics, being tailored to each particular domain by experts, have been successfully applied to many computationally hard optimisation problems. However, once implemented, their application to a new problem domain or a slight change in the problem description would often require additional expert intervention. There is a growing number of studies on reusable cross-domain search methodologies, such as, selection hyper-heuristics, which are applicable to problem instances from various domains, requiring minimal expert intervention or even none. This study introduces a new learning automata based selection hyper-heuristic controlling a set of multiobjective metaheuristics. The approach operates above three well-known multiobjective evolutionary algorithms and mixes them, exploiting the strengths of each algorithm. The performance and behaviour of two variants of the proposed selection hyper-heuristic, each utilising a different initialisation scheme are investigated across a range of unconstrained multiobjective mathematical benchmark functions from two different sets and the realworld problem of vehicle crashworthiness. The empirical results illustrate the effectiveness of our approach for cross-domain search, regardless of the initialisation scheme, on those problems when compared to each individual multiobjective algorithm. Moreover, both variants perform signicantly better than some previously proposed selection hyper-heuristics for multiobjective optimisation, thus signicantly enhancing the opportunities for improved multiobjective optimisation.

IEEE Transactions on Evolutionary Computation